We discuss the Bisognano–Wichmann property for localPoincaré covariant nets of standard subspaces. We provide a sufficient algebraic condition on the covariant representation ensuring the Bisognano–Wichmann and the duality properties without further assumptions on the net. We call it modularity condition. It holds for direct integrals of scalar massive and massless representations. We present a class of massive modular covariant nets not satisfying the Bisognano–Wichmann property. Furthermore, we give an outlook on the relation between the Bisognano–Wichmann property and the split property in the standard subspace setting.
The Bisognano–Wichmann Property on Nets of Standard Subspaces, Some Sufficient Conditions / Morinelli, V.. - In: ANNALES HENRI POINCARE'. - ISSN 1424-0637. - 19:3(2018), pp. 937-958. [10.1007/s00023-017-0636-4]
The Bisognano–Wichmann Property on Nets of Standard Subspaces, Some Sufficient Conditions
Morinelli V.
2018
Abstract
We discuss the Bisognano–Wichmann property for localPoincaré covariant nets of standard subspaces. We provide a sufficient algebraic condition on the covariant representation ensuring the Bisognano–Wichmann and the duality properties without further assumptions on the net. We call it modularity condition. It holds for direct integrals of scalar massive and massless representations. We present a class of massive modular covariant nets not satisfying the Bisognano–Wichmann property. Furthermore, we give an outlook on the relation between the Bisognano–Wichmann property and the split property in the standard subspace setting.File | Dimensione | Formato | |
---|---|---|---|
Morinelli_preprint_The-Bisognano-Wichmann-property_2018.pdf
accesso aperto
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
261.81 kB
Formato
Adobe PDF
|
261.81 kB | Adobe PDF | |
Morinelli_The-Bisognano-Wichmann-property_2018.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
569.67 kB
Formato
Adobe PDF
|
569.67 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.